12 research outputs found

    Epidemiological impact of waning immunization on a vaccinated population

    Get PDF
    This is an epidemiological SIRV model based study that is de- signed to analyze the impact of vaccination in containing infection spread, in a 4-tiered population compartment comprised of susceptible, infected, recov- ered and vaccinated agents. While many models assume a lifelong protection through vaccination, we focus on the impact of waning immunization due to conversion of vaccinated and recovered agents back to susceptible ones. Two asymptotic states exist, the \disease-free equilibrium" and the \endemic equi- librium" and we express the transitions between these states as function of the vaccination and conversion rates and using the basic reproduction number. We nd that the vaccination of newborns and adults have dierent consequences on controlling an epidemic. Also, a decaying disease protection within the re- covered sub-population is not sucient to trigger an epidemic on the linear level. We perform simulations for a parameter set modelling a disease with waning immunization like pertussis. For a diusively coupled population, a transition to the endemic state can proceed via the propagation of a traveling infection wave, described successfully within a Fisher-Kolmogorov framework

    Turing patterns from dynamics of early HIV infection

    No full text
    We have developed a mathematical model for in-host virus dynamics that includes spatial chemotaxis and diffusion across a two-dimensional surface representing the vaginal or rectal epithelium at primary HIV infection. A linear stability analysis of the steady state solutions identified conditions for Turing instability pattern formation. We have solved the model equations numerically using parameter values obtained from previous experimental results for HIV infections. Simulations of the model for this surface show hot spots of infection. Understanding this localization is an important step in the ability to correctly model early HIV infection. These spatial variations also have implications for the development and effectiveness of microbicides against HIV

    Spatiotemporal Dynamics of Virus Infection Spreading in Tissues

    No full text
    Virus spreading in tissues is determined by virus transport, virus multiplication in host cells and the virus-induced immune response. Cytotoxic T cells remove infected cells with a rate determined by the infection level. The intensity of the immune response has a bell-shaped dependence on the concentration of virus, i.e., it increases at low and decays at high infection levels. A combination of these effects and a time delay in the immune response determine the development of virus infection in tissues like spleen or lymph nodes. The mathematical model described in this work consists of reaction-diffusion equations with a delay. It shows that the different regimes of infection spreading like the establishment of a low level infection, a high level infection or a transition between both are determined by the initial virus load and by the intensity of the immune response. The dynamics of the model solutions include simple and composed waves, and periodic and aperiodic oscillations. The results of analytical and numerical studies of the model provide a systematic basis for a quantitative understanding and interpretation of the determinants of the infection process in target organs and tissues from the image-derived data as well as of the spatiotemporal mechanisms of viral disease pathogenesis, and have direct implications for a biopsy-based medical testing of the chronic infection processes caused by viruses, e.g. HIV, HCV and HBV.The research was funded by the Russian Science Foundation (Grant no. 15-11-00029) to G.B., A.M., V.V. A.M. was also partially supported by a grant from the Spanish Ministry of Economy and Competitiveness and FEDER (Grant no. SAF2013-46077-R). S.T. and V.V. were also partially supported by FONDECYT (Chile) project 1150480. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Acid sphingomyelinase in macrophage biology

    No full text
    corecore